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This paper treats the steady inertialess flow of an incompressible viscous fluid through 
an infinite rectangular duct rotating rapidly about an axis (the y axis) perpendicular 
to its centre-line (the 2 axis). The prototype considered has parallel sides at z = _+ 1 for 
all x, parallel top and bottom a t  y = f a  for x < 0 and straight diverging top and 
bottom at y = 5 (a -tbx) for x > 0. An earlier paper (Walker 1975) presented solutions 
for b = O( i), for which the flow in the diverging part (x > 0) is carried by a thin, high- 
velocity sheet jet adjacent to the side at z = 1, the flow elsewhere in this part being 
essentially stagnant. The present paper considers the evolution of the flow as the 
divergence decreases from O( 1) to zero, the flow being fully developed for b = 0. This 
evolution involves four intermediate stages depending upon the relationship between 
b and E ,  the (small) Ekman number. In  each successive stage, the flow-carrying side 
layer in the diverging part becomes thicker, until in the fourth stage, it spans the duct, 
so that none of the fluid is stagnant. 

1. Introduction 
The first part of this study (Walker 1975) treats the steady flow of an incompressible 

viscous fluid through a variable-area duct which has rectangular cross-sections and 
which is rotating rapidly about an axis perpendicular to its centre-line and parallel to 
one pair of its walls (the sides). The x axis coincides with the duct’s centre-line and the 
y axis is parallel to the axis of rotation, so tha to  = 09, where w is the constant angular 
velocity and 9 is a unit vector in the y direction. The flow is assumed to be inertialess, 
while the Ekman number E = v/2wdZis assumed to be small, so that viscous effects are 
confined to the boundary layers and free shear layers. Here v is the fluid’s kinematic 
viscosity, and d is half the distance between the sides, which are parallel for all ducts 
considered. Attention is focused on a prototype formed by joining a semi-infinite 
constant-area duct (x < 0) with walls at  y = * a  and z = 4 1 to a semi-infinite duct 
(x > 0) with parallel sides at  z = & 1 and straight, symmetrically diverging top and 
bottom at y = (a+bx) (see figure 1).  Far upstream ($a -a), the flow is fully de- 
veloped and the dimensionless axial velocity u is equal to one, except in the boundary 
layers. The fully developed flow is disturbed as it approaches the join. At the join, the 
flow enters a free shear layer of thickness O(Ei ) ,  which spans the duct at x = 0. Inside 
this layer, the entire flow turns towards the right-hand side (facing in the flow direc- 
tion), so that the transverse velocity w must be large, O(E-g), in order to carry the 
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FIGURE 1. Duct. 

O( 1) flow inside this thin layer. At z = 1, the flow turns back towards the + x direction 
and enters a boundary layer of thickness O(E4) adjacent to the right-hand side. In  the 
diverging duct (x > 0 ) ,  the entire flow is carried by a large, O(E-*), axial velocity inside 
the boundary layer adjacent to the side z = 1, while the fluid elsewhere is essentially 
stagnant. For this solution, the inertialess approximation is valid if the Rossby 
number Ro = U/2wd is much less than E),  where U is the average velocity in the 
constant-area duct (x < 0). 

The analysis presented in the previous part (Walker 1976) assumes implicitly that b, 
the slope of the top and bottom in the diverging duct (x > 0) ,  is O(1). However, if 
b = 0,  the prototype is an infinite constant-area duct, and the flow is fully developed 
for all x .  The object of the present analysis is to reconcile the radically different flows 
for b = O(1) and b = 0 by considering the evolution of the flow as b decreases from 
O( 1) to 0. This evolution consists of four transitional stages: 

(1) E i  4 b 4 1, ( 2 )  b = O(Ea), ( 3 )  E4 4 b < Ei ,  (4) b = O(E4). 

For the first three stages, the flow resembles that f o r b  = O( 1) .  The disturbance to the 
fully developed flow in the constant-area duct (x < 0) is now O(b)  and is thus negligible. 
The flow enters the free shear layer of thickness O(E4) at x = 0 and is again carried by 
an O(E-4) transverse velocity inside this layer towards the right-hand side ( z  = 1) .  
Here the flow turns and enters a boundary layer of thickness O(S) adjacent to the side 
z = 1 in the diverging duct (x > 0 ) ,  while the fluid outside this side layer in the diverging 
duct is still essentially stagnant. As b decreases, the side-layer thickness Sincreases, and 
the order of magnitude of the large axial side-layer velocity, namely O(S-l), decreases. 
Three different stages are required to cover this range of b because of changes in the 
relationship between the effects of the Coriolis force, viscosity and Ekman pumping. 
There are Ekman layers of thickness O(E4) adjacent to the top and bottom 

y = a ( a + b x ) ,  
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above and below the side layer. The variables in these Ekman layers match the side- 
layer variables as long as the normal components (1 + b2)-i (bu T u)  ogthe side-layer 
velocity on the top and bottom y = +_ ( a + b x )  equal the Ekman pumping, which is 
related to the normal component of the side-layer vorticity. For the first stage 

E* 4 6 4 E), 

and the Coriolis and viscous effects are comparable, while the Ekman pumping is 
negligible; for the second stage 6 = O(Ei) ,  and all three effects are comparable; for the 
third stage Et 4 6 < 1, and the Coriolis force and the Ekman pumping are comparable, 
while the viscous effects in the side layer are negligible. For all three of these stages, the 
structure of the side layer is changing slowly in the x direction, so that a/ax = O(b) in 
the diverging duct ( x  > 0 ) .  

As the slope approaches the fourth stage, b = O(Ei) ,  the side-layer thickness 6 
becomes O( l) ,  so that the side layer is spreading across the entire duct and is evolving 
from a boundary layer into a 'core region. Alternatively, for b % E )  the downstream 
core is a geostrophically blocked region, because the geostrophic surfaces x = constant 
intersect the solid boundaries z = + 1, while for b = O(E4) the downstream core is a 
geostrophically free region, because the top and bottom are very nearly parallel and 
there are no longer any geometrically defined geostrophic surfaces, so that the core 
can now carry the O( 1) flow. The structure of the free shear layer at  x = 0 for b 9 Ei is 
ultimately linked to the singular character of the solution in the intersections of the 
upstream and downstream Ekman layers at x = 0, y = + a .  For b = O(E4), these 
intersections no longer have singular solutions, and the free shear layer does not occur 
for this transitional stage. 

In  the fourth stage, the downstream core is divided into a near core for 0 < x < co in 
which a/ax = O(1) and a far core for 0 < bx < m in which a/& = O(b).  The far core 
represents the degenerate form of the right-hand side layer for b 9 Et.  While the flow 
in the far core is spread across the entire duct, the velocity profile in a horizontal plane 
is skewed towards the right-hand side as long as b =! 0 .  The near core represents the 
degenerate form of the free shear layer at z = 0 for b E i .  It accepts a uniform velo- 
city profile at x = 0 and redistributes the flow towards the right-hand side in order to 
match the skewed far-core velocity profile as x-+ m. As b + 0 in the solution for the 
fourth stage, the dimensionless axial velocity in both the near and the far core 
approaches one, so that the flow becomes fully developed everywhere. 

As b decreases through the four stages, the condition on the Rossby number under 
which the inertialess approximation is valid is relaxed, until in the fourth stage it 
becomes Ro 4 1.  

The flows treated here and in the first part of this study (Walker 1975) are closely 
related to the flows inside the impellers of centrifugal pumps and radial-flow hydraulic 
turbines, as well as to certain geophysical flows. In particular, since the fl-effect on 
ocean currents is related to the effects of diverging walls and since the corresponding 
divergence would be relatively small, the present analysis may be of use in explaining 
certain oceanographic phenomena (Hseuh & Legeckis 1973). 
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2. General considerations 
The flow considered here is incompressible, inertialess and steady relative to a 

Cartesian co-ordinate system which is rotating at a constant angular velocityo = u9 
relative to some inertial reference frame. The non-dimensional governing equations 
are 

where v is the velocity, Q, is the reduced pressure, f is a unit vector in they direction and 
E is the Ekman number (Walker 1975). The flow is confined by a pair of semi-infinite 
rectangular ducts joined at x = 0 to give a prototype with sides at z = f 1 and with top 
and bottom at y = f f(x), where 

a for x < 0,  
f = (  a+bx  for x > O  

(see figure 1) .  The velocity v is normalized with respect to the average velocity in the 
constant-area duct ( x  < O ) ,  so that the non-dimensional solution must satisfy the 
tot a1 -flow condition 

( la74 V . V  = 0, f x v  = -VQ,+EV2v,  

s’l K,udydz = 4a. (2) 

The boundary conditions are 

v = O  at y =  +f, z =  k l ,  (3a, b )  

which, together with the governing equations (l), form a homogeneous problem whose 
solution is normalized by the condition ( 2 ) .  

If E -g 1, the interior of the duct can be divided into afi upstream core (z < 0 ) ,  a 
downstream core (z > O ) ,  a free shear layer of thickness O(Ef)  which spans the duct at 
x = 0, boundary layers of various thicknesses adjacent to the sides z = & 1 and Ekman 
layers of thickness O ( E f )  adjacent to the top and bottom y = k f. The well-known 
solutions for the Ekman layers satisfy the boundary conditions (3a) and match the 
variables in the adjacent core, free shear layer or side layer provided these variables 
satisfy the Ekman conditions at y = & f. For the present analysis, it  turns out that 
O(E4bVv) and O(E*av/ay) terms are negligible, so that the Ekman conditions reduce to 

flu T v = ( p p ( a ~ l a ~ - a W / a x )  at y = kf, (4) 

where f = 0 for x < 0 and f = b for x > 0 (Greenspaa 1968, p. 92). 
The present analysis treats the evolution of the flow from that treated in the first 

part of this study (Walker 1975), for which b = O( l),  to fully developed flow, for which 
b = 0. This evolution involves four transitional stages: (1) 1 9 b 9 Ef, (2) b = O ( E f ) ,  
( 3 )  Ef 9 b 9 Ef and (4) b = O ( E f ) .  The regions which carry the O(1) flow, as well as 
sketches of the corresponding streamlines in the plane y = 0, are shown in figure 2 (a)  
for the first three stages and in figure 2 ( a )  for the fourth stage. For all four stages, the 
flow in the upstream core D is fully developed, so that 

u = l ,  v = w = o ,  @ = z ,  (6) 

neglecting an O(b) disturbance here (Calderon 1976). For the first three stages, the 
order of magnitude of the thickness 6 of the downstream side layer A is (1)  (E/b)*, 
( 2 )  Ef and ( 3 )  Ei /b  respectively, while a/az = O(b) in this layer. For the fourth stage 
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FIGURE 2. Horizontal sections at y = 0 showing the regions which carry the 0 ( 1 )  flow and a 
sketch of the streamlines for (a) 1 9 b S Eh (first three stages) and (b)  b = O(E4) (fourth stage). 

@x = O(1) in the near downstream core C and a/ax = O(b) in the far downstream 
core A .  

The objective here is an asymptotic solution for small b and E for four different rela- 
tionships between b and E .  In  each flow-carrying region, the co-ordinates are stretched 
or compressed such that the gradient here is independent of E and b .  The variables in 
this region are then written as asymptotic expansions in which the coefficients are 
functions of the possibly rescaled co-ordinates, but are independent of b and E .  For the 
first and third stages b and E are independent small parameters, so that double asymp- 
totic expansions are needed, c.g. 

u = &-%o, 0) + %, 0)  + % ,  0) + * *. 

+ bS-lu(o, 1) + bu(1,1) + . . . 
+ b2J-1U(o, 2)  + . . . , 

while for the second and fourth stages there is only one independent small parameter, 
so that single expansions suffice, e.g. 

u = E-*u(,) + ~ ( 1 )  + E h ( d  + . . . . 
Actually, perturbations with other powers of the small parameters enter these expan- 
sions through matching with adjacent regions, so that the expansions are not simple 
power series as shown above. However, whatever the irregular progression of the 
expansions, they can always be arranged into similar double expansions for stages 1 
and 3 and single expansions for stages 2 and 4. The present analysis treats only the 
O( 1) flow and thus is concerned only with the leading terms in the asymptotic expan- 
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sions for each flow-carrying region. Henceforth v and @ denote the leading terms in the 
expansions for these variables in one of the regions A ,  B and C. 

Inertial effects are assumed to be negligible throughout, so that the inertial term 
Rofv . '0) v has been dropped from the Navier-Stokes equation to obtain (1 b) .  Once the 
inertialess solution for a given stage has been found, the order of magnitude of the 
inertial term can be determined for the core, for each boundary layer and for the free 
shear layer at x = 0. Requiring that this term be much smaller than the terms in (1 b)  
generates a condition on Ro for each subregion, and the most restrictive of these con- 
ditions for a given stage is the condition which must be satisfied for the entire flow to be 
inertialess. For b = Q(l), the most restrictive condition, Ro < Ef,  follows from the 
high-velocity, downstream (z > 0) side layer at z = 1, in which the largest inertial 
forces occur. For small b, the governing condition always follows from the flow- 
carrying, downstream side layer (or core for the fourth stage). As the layer thickness 
increases and the layer velocity decreases with decreasing b,  the inertialess condition is 
relaxed until, in the fourth stage, Ro < 1 is a sufficient condition. Such conditions could 
occur in centrifugal pumps or hydraulic turbines operating at design speed but with a 
very low flow rate. For a typical turbomachine operating under design conditions 
E 4 1 but Ro = O( l) ,  so that the flow is not inertialess. For many geophysical flows 
both E and Ro are small, and many different relations between Ro and E occur in 
different physical situations. 

Sections 2 , 3 , 4  and 5 present the solutions for stages 1 , 2 , 3  and 4 respectively. Many 
additional details, in particular the solutions for non-flow-carrying regions, are pre- 
sented in Calderon's (1976) thesis. 

3. First stage: 1 9 b % E i  
For small b, the solution presented in the first part of this study (Walker 1975) for the 

side layer of thickness O(E*) at z = 1 in the diverging duct (z > 0) consists of a series of 
vanishing terms plus one term which dies out like exp [g(b/aE)'(z - l)] far away from 
the side. This indicates that, as b decreases, the side-layer thickness S increases and 
that, forb 4 1,6 = O((E/b)*) .  That this is the correct expression for Sfor the first stage 
is confirmed by the resulting solution. The lower limit on b for this stage follows from 
the Ekman condition (4). The right-hand side of this condition is negligible as long as 
bu % E46-1~ = Eibh, or b 

With the change of co-ordinates x = X / b ,  z = 1 + (E/b)*g, equations (1) become 
E l .  

where the orders of magnitude ofu, v ,  wand @ are 8-l, b P 1 ,  b and 1 respectively, while 
@ and P are integration functions of X and 6 only. The Ekman conditions (4) give 
F = 0 and (a  + X) a4@/ag4 + a@/ag = 0. (7) 

Consideration of (1)  evaluated at  the left-hand side wall z = - 1, together with 
assumptions about the orders of magnitude of the variables and the derivatives in the 
neighbourhood of this side, indicates that the Q( 1) term in @ is constant along this side. 
The upstream core solution ( 5 )  indicates that Q, = - 1 along this side and throughout 
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the downstream core, since the fluid is essentially stagnant here. Therefore matching 
the downstream core gives the boundary condition 

(9+--1 as C3-m (8 )  

on the O( 1) term in Q, in the downstream side layer A .  There is a possibility of an inner 
side layer of thickness O(E4) separating the outer side layer A from the side z = 1. Such 
a layer would have the same structure as a layer of thickness O(E*) between the parallel 
top and bottom and therefore could not satisfy the condition (3  b)  and match non-zero 
values of either u or w in the outer side layer since these values would be independent 
of y (Howard 1969). Thus the solution of (7) must satisfy the boundary conditions 

a q a c  = a 3 q a p - a q a x  = o at y = 0. (9a, b) 

However, (6b), (7) and (9a) imply that v = 0 at g = 0, so that the solution for the outer 
side layer A satisfies the boundary conditions (3  b ) ,  and to first order no inner side layer 
is needed. The solution of (7) which satisfies the conditions (8) and (9) is 

(9 = A ( a + X ) - l G -  1, ( 1 0 4  

( l o b )  

2 = y/2(a+X)+, c1 = 34, (10c, 4 
where G ( X ,  5)  = exp (2) [cos (cl 2) - sin (cl Z ) / c l ] ,  

A is an integration constant and the other variables are given by (6). Since the entire 
flow must be carried by this side layer, this solution must satisfy the condition (2), 
which gives A = 2a. 

In  this solution v = 0 on the vertical surfaces c1 Z = - nn, for n = 0,1,2, . . . , and u is 
alternately positive and negative between these surfaces. Thus there are alternate 
layers of forward and backward flow with no O( 1 )  transfer of fluid between these layers. 
The boundary-layer thickness is growing like (a + X)*, so that this layer spreads across 
the entire duct as X +- co. Indeed, as X --f co, the aspect ratio of the duct’s cross-section 
approaches infinity, and the flow becomes Poiseuille flow between the sides. A separate 
analysis would be necessary in order to treat the development of the present side-layer 
solution into the solution for Poiseuille flow, and this analysis is not presented here. 
Consideration of the inertial perturbation of the present side-layer solution shows that 
the inertialess approximation is valid for this stage if Ro < a2 = (E/b)) (Walker 1974). 

The variables in the free shear layer C of thickness O(S1) match the fully developed 
flow ( 5 )  upstream and the stagnant fluid downstream and deliver the entire flow to the 
intersection regon B. The slope b does not enter the governing equations, so that the 
solution here is given by a rescaling of similar solutions given by Howard (1969). The 
results are 

u = asp, v = -yaw/ap, w = -acD/ag, (Ila, b, 6) 

z)exp(-c,E)-l for g >  0, ( 1 1 4  
( 1 1 4  @ = rl+ -t(l+z)exp(c,t)+z for 5 < 0, 

where w is O(E-f), while u, v and (9 are O( l), and 

= E-fx, cz = 2-ia-4. 

In  this solution, v is discontinuous at ( = 0, and there is an inner free shear layer of 
thickness O(E4) which separates the upstream ( E  < 0) and downstream (5 > 0) halves 
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of the outer free shear layer C and which matches the two different values of v at 
5 = O*. The solution for this inner layer is not presented here because this layer carries 
no O( 1) flow, but it is presented in Calderon’s (1 976) thesis. 

Like the free shear layer C, the intersection region B is divided into an upstream half 
and a downstream half, separated by an inner region of t,hickness O(E)) at x = 0. 
However, unlike the layer C, the two halves of region B have quite different structures 
arising from the difference in the Ekman conditions (4) withf’ = 0 ( E  < 0) and with 
f’ = b ( E  > 0) (see figure 3). The transverse and axial dimensions of the downstream 
half are O(6) and O(E*) respectively, while the rescaled version of (1) gives 

u = aQ/ag, v = - y a w / a p  + F ,  w = - aaqat, 
where the orders of magnitude of u, v, w and 
while 0 and F are integration functions of 
give F = 0 and 

which is the same as (7) with X = 0. As 6 --f 00, the solution must match the downstream 
side-layer solution (10) evaluated at  X = 0, while as [+ -00, it must match the free- 
shear-layer solution (1  1) evaluated at z = 1. The boundary conditions ( 3 b )  become 

are 8-1, b8-l, E-f and 1, respectively, 
and [ only. The Ekman conditions (4) 

~ a w / a p +  aa /ac  = 0, 

a q a g  = a q a E  = o at g = 0, 

which imply that v is zero here, as well as u and w. Therefore the solution is 

= [exp ( - c2 E )  - 11 [1 - G(0,6)1+ G(0,C).  

For the upstream half of the intersection region B, the transverse and axial dimen- 
sions are both O(Ei ) ,  and (1)  and the Ekman conditions (4) give 

u = a q a q ,  v = - cf yv2q (12% b )  

w = - a a q a ~ ,  v4a = c p ~ ,  (1% 4 
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where u and w are O(E-i) ,  while v and Q, are O( l),  Q, is an integration function off and 
7 only, so that V2 is a two-dimensional Laplace operator, and 

7 = E - ~ ( z -  1). 
The boundary conditions are 

Q,+1-exp(c2[) as q+ -00, 

C g - t l  as E+-00, 

Q, = 1, aQ,/aq = 0 at 7 = 0, 

Q, = 0, aQ,/a[ = -c2 at E =  0. ( 1 3 e , f )  

Here the condition (13a) arises from matching with the upstream half (f < 0) of the 
free-shear-layer solution ( I  1 ) ;  the condition (13 b )  arises from matching with the 
solution in the side layer of thickness O(Ef)  at z = 1 in the constant-area duct (x < O ) ,  
in which the O( 1) term in Q, is unity since this layer carries no O( 1) flow; the conditions 
(1  3 c ,  d )  follow from the boundary conditions ( 3  b )  and the fact that the inner side layer 
of thickness O(E4) here cannot accept a jump in u or w; the conditions (13e, f )  follow 
from the continuity of u and w across the inner free shear layer of thickness O(E4) at 
x = 0. On the other side of this inner free shear layer is the downstream half of the 
outer free shear layer C, evaluated at  z = I, rather than the other half of the inter- 
section region B, since, relative to the upstream half of B, the downstream half has 
zero transverse dimension. Since the flow entering the upstream half of B must be 
passed on to the downstream half, it  must all converge to the corner E = 7 = 0 in the 
upstream half. In fact, the jump in Q, from one at  q = 0 for all E to zero at E = 0 for all 
7 represents a line sink a t  the corner of the upstream half which absorbs half of the total 
flow through the duct. The boundary-value problem ( 1 2 4  with (13)  for the upstream 
half of the intersection region B is a well-posed, fourth-order, two-dimensional, elliptic 
problem on a quarter-plane. Solutions can be found using Fourier transform techniques, 
which lead to a singular integral equation, or by numerical techniques, such as a finite- 
difference relaxation scheme. Solutions are not presented here. 

4. Second stage: b = aEf 
As b for the first stage approaches O(Ei) ,  the right-hand side of the Ekman conditions 

(4) for the downstream side layer A at z = I becomes comparable to the left-hand side, 
so that the effects of the Ekman pumping become comparable to those of the Coriolis 
force and viscosity, and the structure of this layer changes. For this stage, there is only 
one independent small parameter, taken to be E i ,  while the other small parameter 
b = a E f ,  where a is a constant of proportionality which is independent of E .  With the 
change of co-ordinates 

for the side layer A ,  equations (1)  again become equations (6), where now the orders of 
magnitude of u, v, w and Cg are E-4, 1, Ei  and 1, respectively, while Q, and F are once 
again integration functions of X and c only. The Ekman conditions (4) now give F = 0 

(14) 
and 

where p ( X )  = 2-4/3(a+aX) ,  q ( X )  = a/2(a+aX). 

x = E + X ,  z = l + E f C  

a 4 q a c 4  - 3 p a w p p  + z q a ~ / a ~  = 0, 
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The solution of (14) must satisfy the boundary conditions (8) and (Q), since the down- 
stream core is still essentially stagnant and the O(1) term in @ is - 1 here, while the 
inner side layer of thickness O(E*) at z = 1 cannot accommodate a jump in either u 
or w. 

The characteristic polynomial for the differential equation (14) in C; has four roots: 
one is zero, one is negative and two have positive real parts. The (real) negative root 
is excluded because the corresponding solution becomes unbounded as [+ - a. For 

X > X ,  = (24/27a2-u)a 

the solution of (14) which satisfies the conditions (2), (8) and (9) is 

@ = 2a(a + aX)-l exp (rl C;) [cos (r2 C;) - rl sin (r2 C;)/r2] - 1, 

where T1 = s+ + 8-, T2 = 34(& - s+), s* = - +[ - q & ( a 2  -p8)4]). 

For X < X,, the solution is 

@ = 2a(a i- aX)-l(r+ - r-)-l[r+ exp (r- C;) - r-exp (r+ C;)]4, 

where 

As X -+ X , ,  both of the solutions (15) and (16) become 

rf = 2p4 cos [)(e 2n)], e = 2n + arc cos ( - qp-8). 

0 = 18raaexp(r[)(l-rC;)-l, 

where r = rf = r- = rl = 3a/2*, r2 = 0. 

As the slope parameter a decreases from large values, the characteristics of the solu- 
tion for this stage evolve from those of the first-stage solution into those of the third- 
stage solution. For a > a, = (2*/27a)), X, c 0, so that the solution (15) applies for all 
X .  In  the solution (15), u = 0 on the vertical surfaces g = - nn/r2 for n = 0, 1,2, . . . , and 
u is alternately positive and negative between these surfaces. Thus the side layer A 
involves alternate layers of forward and backward flow, just as it does for the first 
stage. For a < a,, X ,  > 0, so that the solution (15) holds for X > X ,  and the solution 
(16) holds for 0 < X -= X,. For X > X,, there is still both forward and backward 
flow, but as X --f X J ,  r2 -+ 0, and the position = - n/r2 of the first surface where u = 0 
tends to -a, so that u > 0 for all [ at X = X, .  

In  the solution (16) for 0 < X < X, ,  u > 0 for all 6, so that there is no backflow here. 
As a decreases, X ,  increases, so that the length of the part of the side layer downstream 
of the join involving only forward flow increases. As a+O, X0+a,  so that the side- 
layer flow is forward for all X and [. 

In  the solutions (15) and (16) for this stage, v + 0 at  C; = 0, so that an inner side layer 
of thickness O(E+) is needed to match this non-zero v and to satisfy the boundary con- 
ditions (3b). The solution in this inner layer is given by a local scaling of the solution 
for similar boundary layers between a parallel top and bottom (Howard 1969) and is not 
presented here. Consideration of the inertial perturbation shows that the inertidess 
assumption is valid for this stage if Ro < S2 = If+. 

The structure of the free shear layer C at x = 0 is unchanged by the decrease in 
b to O ( E t ) ,  and the solution here is still given by (11). The axial and transverse dimen- 
sions of both the upstream (5 < 0) and the downstream (6 > 0) halves of the intersection 
region Bare now O(Ef) ,  i.e. 6 = Ei in figure 3. In  the upstream half, equations (12) and 
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boundary conditions (13a-d) still hold, with 7 now the same as 5. In  the downstream 
half, u and w, which are now O(E-f),  are given by (12~2, c) ,  while 

v = - y v 4 0 ,  

v40 - gvw + W - w / a q  = 0, (1 7) 

where v and 0 are O( 1) and 0 is an integration function of 5 and q only. The solution of 
(17) must satisfy the boundary conditions 

0 =  1, a 0 / @ = 0  at q = O ,  

cD+eexp(-c,g)-l aa q+--oo, 

and as f;+m it  must match either (16) or (16) evaluated at X = 0, depending on 
whether a > a. or a < a,,, respectively. In  addition, 0 and a#/aE evaluated at 5 = 0- in 
the upstream solution of ( 1 2 4  must equal 0 and a@/a[ evaluated at 5 = O+ in the 
downstream solution of (17), because of the continuity of u and w across the inner 
region which separates the two halves of the intersection region B. Two more condi- 
tions linking the solutions at 5 = Of are needed in order for this pair of elliptic fourth- 
order equations with coupled boundary conditions to be a well-po'sed problem. Indeed, 
a detailed analysis of the inner region, whose axial and transverse dimensions are 
O(E))  and O(E4) respectively, yields two conditions relating the upstream and down- 
stream values of a20/aE2 and as0/a53 at 5 = Of (Walker 1976). Solutions for the inter- 
section region can be obtained by transform or numerical techniques, as before, but 
are not presented here. 

5. Third stage: E4 B b 9 E+ 

behaviour 

as a+O.  Since a5 = (bE-f)E-)(z- 1) = bE-)(z- i), 

the first term in (18) indicates that the side-layer thickness for b -g E f  is given by 
6 = O(Ei /b) ,  and this is confirmed by the resulting solution. The lower limit on b for 
this stage follows from setting 6 = 1, since then the assumption that this layer is a thin 
region no longer holds. 

From (6a), and (16), the axial velocity in the downstream side layer A has the 

u + 2+a[exp (24ac) - exp (c2 513 (18) 

With the change of co-ordinates 

2 = X / b ,  z = 1 +(Ei/b)C,  

equations (1) become u = 80/8c, v = P ,  w = - a 0 / a X ,  

where the orders of magnitude of u, w, w and 0 are now el, bs-l, b and 1, while 0 and 
F are integration functions of X and 5 only. Comparing these results with the results 
(6) for the first stage, the orders of magnitude are the same, although the definition of 6 
is different, while the viscous terms in (6 b, c )  are absent in the present expressions for 
v and w. The Ekman conditions (4) give P = 0 and 

a 2 q a p -  2 i a q a 5  = 0. (19) 
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FIGURE 4. Streamlines in a vertical plane 5 = constant inside the downstream side layer A for 
the third stage, E i  b & E k  

The second term in (18) indicates that a side layer of thickness O(E4) persists for 
b g Ei ,  but that the axial velocity here is 6' < E-4, so that this inner viscous layer 
carries no O( 1) flow. Thus the solution of (19) must satisfy the total-flow condition ( 2 )  
and the condition (8), since the downstream core is still essentially stagnant. Thus the 
solution in the side layer A is 

Q, = 2a(a+X)- lexp(2 tc) -  I .  (20) 

Since v = 0, the streamlines in a plane { = constant must be horizontal, and since 
the top and bottom are diverging, all of the streamlines above y = a and below y = - a  
must originate from the Ekman layers at  y = & (a f X), as shown in figure 4. The flow 
entering the top and bottom of the side layer A from the adjacent Ekman layers in a 
section of length dX is 2a(a+X)- ldX.  At c = 0, w = 2a(a+X)-2,  so that the flow 
leaving the side layer and entering the inner side layer of thickness O ( E f )  at z = 1 in 
the same section is also 2a(a + X)- ldX,  and the total flow at each section of the side 
layer A is the same. Inside the inner side layer, the flow turns towards the top and 
bottom, where it enters the Ekman layers above and below the inner layer (see figure 
6). Inside these Ekman layers, the flow turns away from the side z = 1 and enters the 
Ekman layers above and below the side layer A, where it turns once again towards the 
+ x direction and re-enters the side layer A.  This transfer of flow is required in order to 
redistribute the side-layer flow as the top and bottom diverge in the absence of a 
vertical side-layer velocity. The inner side layer matches the non-zero values of u and 
w in the outer side layer A at y = 0 and satisfies the boundary conditions u = w = 0 at 
7 = 0, where, once again, 7 = EA(z  - 1), but the solution for the inner side layer has a 
non-zero value of v at 7 = 0. An even thinner side layer with thickness O(E)) matches 
this v and satisfies the boundary conditions (3 a ) .  The slope b does not enter the analysis 
of the inner side layers of thickness O(Ef)  and O(E*), and their structure is given by a 
local scaling of the structure of similar layers between a parallel top and bottom 
(Howard 1969). Consideration of the inertial perturbation to the solution for the side 
layer A for this stage indicates that the inertialess approximation holds as long as 
RO Q P = E/b2. 

The structure of the free shear layer C at x = 0 remains unchanged by the decrease in 
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I i * ,  

FIGURE 5. Isometric sketch showing transfer of flow from the central portion of side layer A 
through the inner side layer and Ekman layers to the bottom portion of side layer A for the third 
stage, E* b + E t .  

b to the range for this stage, and the solution here is still given by ( 1  1). The transverse 
and axial dimensions of the intersection region B are O(6) and O(E*) respectively. In 
this region, the O( 1 )  term in Q, is a function of E and 6 only, and the equation governing 
it, which is the same as the governing equation in the free shear layer C, involves only 
derivatives with respect to 5. Therefore the solution can be found independently at 
each section y = constant. This solution is simply the local scaling of the solution (1 1) 
which gives Q, -+ 1 as <-+ - 00 and matches the solution in the side layer A evaluated 
a t  X = 0 as E-+co. The O(E-*) term in w and the O(1) term in v are still given by 
( 11 b, c )  while the O(S-l) term in u is given by u = aQ,/ay, and the solution for Q, is 

1 +Hexp (c2E) for 6 < 0, 
1+H[2-exp(-c2g)] for 6 > 0, 

H ( [ )  = exp (246) - 1.  where 

6. Fourth stage: b = p E )  
As b becomes O(E) ) ,  6 for the third stage becomes O(l) ,  so that the side layer A 

evolves into a core region. For this stage, the downstream core is geostrophically free, 
so that the fluid here is no longer stagnant. Therefore there is no longer a need for a free 
shear layer C or an intersection region B to transfer the flow from the upstream core D 
to the downstream side layer A ,  and these regions do not occur in the first-order solu- 
tion for this stage. 

The downstream core (x > 0) is divided into a far core A ,  in which a/& = O(E4),  
and a near core C ,  in which a/ax = O(1). With the change of co-ordinates x = E-4X 
for the far downstream core, (1)  and the Ekman conditions (4) give 

u = a@/az, v = 0, w = -a~,/ax, W a ,  b, c )  

1(2W a w / a Z 2  - c3 a q a z  = 0, 
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Side 
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FIGURE 6. Isometric sketch showing circulation and redistribution of flow for the fourth stage, 
B = O(E4). 

where c3 = 24p; u and @ are O(1); v and ware O(E4); and @ is a function of X and z 
only. 

There are side layers of thickness O(E4) which separate the downstream core from 
the sides at z = k 1.  Since u = O( 1)  in these layers, they make no contribution to the 
O( 1)  flow, so that the solution of (21) must satisfy the total-flow condition (2). Therefore 

<D = a(a +pX)-l  cosech (c3) exp (c3 z )  + D, 

where D is an integration function of X .  The side layers of thickness O(E4) match the 
non-zero core values of u and w at  z = k 1 and satisfy the boundary conditions u = w = 0 
at 17 = 0, where now 9 = E-f(z T 1) at z = f 1, as long as D is a constant. In  the near- 
core solution, @ = * 1 at z = * 1 for all x, so that matching the near and far cores gives 

D = - cothc,. 

Like the solution for the downstream side layer A for the third stage, the present 
solution for the far downstream core A involves only horizontal streamlines, since 
v = 0, and yet the flow must be redistributed in they direction as it progresses down the 
duct because of the divergence of the top and bottom. As in the third stage, this redis- 
tribution is accomplished through the transfer of flow from the core to the side layer of 
thickness O(E4) at z = 1, then to the Ekman layers above and below this side layer, then 
to  the Ekman layers above and below the core, and finally back into the core with a 
horizontal velocity at the top and bottom, thus maintaining a u which is independent 
of y. However, here we find an additional O(E4) circulation of flow through the core, the 
side layers at  z = f 1 and the Ekman layers at  y = f (a+pX). For a duct section of 
length dX, the total flow entering the right-hand side layer at z = 1 from the core is 

QRs = 2pa(a +pX)-l cosech c3 exp c3 d X ,  
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while the total flow entering the core from the Ekman layers at y = 

The difference, namely 

(a +pX) is 

QTB = 4p(a +pX)-’dX. 

QLS = QRS-QTB = QRsexp (2--3), 

367 

returns to the core from the left-hand side layer at z = - 1, as shown in figure 6. 

ditions (4) give 
No change of co-ordinates is needed for the near core, and (1) and the Ekman con- 

(2% b, c )  

V2@-cCQa@/az = 0,  ( 2 2 4  

u = a@/az, v = 0, M = - a q a x ,  

where u, w and @ are 0(1) ,  v is O(E4) and Q, is a function of 2 and z only, so that 
V 2  = a2/ax2 + a2/az2. The boundary conditions are 

@ = z  at x = O ,  @ = + l  a t  z = + 1 ,  

@ --f cosech c3 exp (c3 z )  - coth c3 as x 3 co, 

which, together with (22 d ) ,  represent a well-posed, two-dimensional, elliptic boundary- 
value problem. Analytic solutions can be found using separation of variables or Fourier 
transforms. Solutions are not presented here, but are presented in Calderon’s (1976) 
thesis. 

The solution for the fourth stage involves no free shear layers or large velocities in the 
side layers, and consideration of the inertial perturbation to this solution indicates 
that the inertialess approximation holds for the fourth stage as long as Ro < 1. As 
p --f 0, --f z, u --f 1 and w --f 0 in both the near and the far downstream core, so that the 
flow becomes fully developed for all 2. This completes the transition from the flow 
treated in the first part of this study (Walker 1975), for which b = O(l) ,  to the fully 
developed flow for b = 0. 

7. General duct geometries 
The present analysis can be extended to more general duct geometries. If the top and 

bottom are at y = +f(x), where If’/ < 1 for all z, while the sides remain parallel at  
z = + I, then the duct can be subdivided axially into portions where 

El  4 lf’l < 1, If’[ = O(Ei) ,  EJ < If’l 4 El  or If’/ = O(E*), 

and the solution in each portion is given by a local scaling of the solution presented in 
$5 2 , 3 , 4  or 5, respectively. This extension is considerably easier than the corresponding 
one for If’ /  = O( I), as discussed in the first part of this study (Walker 1975), because, to 
first order, the curvature of the top and bottom is negligible here. An exactly equivalent 
scaling is presented by Walker & Ludford (1 972) for the analogous problem of an MHD 
flow in an insulated variable-area rectangular duct with a small divergence and with a 
strong transverse magnetic field. The extension to ducts with symmetrically diverging 
sides at z = + g(x) ,  with no restrictions on g, is discussed in the first part of this study 
(Walker 1975). 

Hseuh & Legeckis (1973) present analytical and experimental results for a rapidly 
rotating rectangular duct with a straight converging bottom with an O(E3) slope. Since 
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the present analysis neglects inertia, the solution in a converging duct can be obtained 
by simply changing the sign of the right-hand side of the total-flow condition (2). The 
solutions presented by Hseuh & Legeckis (1973) agree with solutions for the second 
stage, which are presented in $3, after the latter have been normalized to give flow in 
the - x direction and the agreement between their analytical and experimental results 
tends to confirm the present analysis, as well as theirs. The results presented in $3  
cover more possibiIities for top and bottom slopes which are O(@)  than those presented 
by Hseuh & Legeckis (1973), while the results presented in $$2, 4 and 5 provide the 
links between their results and the results for b = O( 1) and for b = 0.  

This research was supported by the National Science Foundation under Grant 
ENG 74-23778. 
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